On Quasinilpotent Semigroups of Operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microspectral Analysis of Quasinilpotent Operators

We develop a microspectral theory for quasinilpotent linear operators Q (i.e., those with σ(Q) = {0}) in a Banach space. When such Q is not compact, normal, or nilpotent, the classical spectral theory gives little information, and a somewhat deeper structure can be recovered from microspectral sets in C. Such sets describe, e.g., semigroup generation, resolvent properties, power boundedness as ...

متن کامل

Hyperinvariant subspaces and quasinilpotent operators

For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors‎. ‎We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors‎. ‎Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector‎, ‎and so $T$ has a nontrivial hyperinvariant subspace‎.

متن کامل

hyperinvariant subspaces and quasinilpotent operators

for a bounded linear operator on hilbert space we define a sequence of the so-called weakly extremal vectors‎. ‎we study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors‎. ‎also we show that any quasinilpotent operator $t$ has an hypernoncyclic vector‎, ‎and so $t$ has a nontrivial hyperinvariant subspace‎.

متن کامل

Semigroups of Linear Operators

Our goal is to define exponentials of linear operators. We will try to construct etA as a linear operator, where A : D(A)→ X is a general linear operator, not necessarily bounded. Notationally, it seems like we are looking for a solution to μ̇(t) = Aμ(t), μ(0) = μ0, and we would like to write μ(t) = eμ0. It turns out that this will hold once we make sense of the terms. How can we construct etA w...

متن کامل

MODULUS HYPERINVARIANT CLOSED IDEALS FOR QUASINILPOTENT OPERATORS WITH MODULUS ON lp-SPACES

In this paper, it is proved that every non-zero continuous operator with modulus on an lp-space whose modulus is quasinilpotent at a non-zero positive vector has a non-trivial modulus hyperinvariant closed ideal. AMS Subject Classification: 47A15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1982

ISSN: 0002-9939

DOI: 10.2307/2044453